水田 亮, 松枝 未遠 (AESTO/気象研究所), 遠藤 洋和, 行本 誠史 (気象研究所)

1. はじめに

地球が温暖化した場合に中高緯度の低気圧 活動が現在と比べてどのように変化するかに ついては、明らかになっていることはまだ少な い。多くの気候モデルでの実験結果に基づけば、 地上付近では高緯度で積雪や海氷の融解が起 こるために熱帯より大きな昇温が起きると考 えられている。それにより下層では南北温度勾 配が減少し、傾圧波活動は弱まることが予想で きる。一方 200-300hPa付近においては、熱帯 で潜熱放出が強まって気温が上昇するが、高緯 度では成層圏であり、成層圏ではCO₂の放射冷 却が強まって気温が下降すると考えられてい る。それによりこの高度では南北温度勾配が増 加し、傾圧波活動を強める方向に作用すること が予想できる。

CMIP3 マルチモデルアンサンブルで将来変 化を調べた結果によれば、Yin (2005) は多くの モデルで上層の傾圧性の強い場所が極向き・上 向きに移動し、それに伴って短周期擾乱の活動 度が極寄りで増加することを示した。一方 Geng and Sugi (2003), Lambert and Fyfe (2006) では多くのモデルで下層の傾圧性の減少に伴 って温帯低気圧の発生数が減少することを示 している。ただし強い温帯低気圧のみを抽出す れば発生数が増加するということも示してい る。 本研究ではこれら上部対流圏の活動度で見 た時の変化と地上低気圧の数で見た時の変化 の関連性について、これらの変化を再現する高 解像度大気モデルを用いて調べた。

2. 実験設定·手法

モデルは気象庁・気象研全球大気モデルで、 解像度 TL959L60 (水平格子間隔約 20km、鉛直 60 層)、TL319L60 (同 60km、60 層)、および TL159L40 (同 120km、40 層)である。地球シミ ュレータを用いておこなった実験結果を使用 した。現在気候再現実験 (1979-2003) では観測 された海面水温(SST)や海氷密接度等を下部境 界条件として用いた。将来気候実験 (2075-2099) における SST は、CMIP3 の A1B シナリオ実験のマルチモデル平均での SST の 昇温と上昇トレンドを観測に加えたものを用 いた (Mizuta et al. 2006, 2008)。60km モデルに ついては現在・将来とも初期値を変えて3本の アンサンブル実験をおこなった。

低気圧の抽出手法は Geng and Sugi (2003)で 用いられているものに若干の変更を加えたも のを用いた。1.25 度格子に内挿した 6 時間ごと の海面較正気圧(SLP)を用いて、

(1) 気圧が周囲8点より低くかつ周囲8点平均
より 0.3hPa 以上低い点を低気圧と判定(標高
1500m以上の場所は除外)

(2) ある時刻の低気圧を 700hPa の 15 日移動平

図 1 12-2 月において 48 時間以上持続した低気圧の 2 年分(2001-2002)の経路を示したもの。(左) JRA25 再解析、(中) 120km モデル、(右) 60km モデル。

図 2 (上) 12 時間以上持続した低気圧の発生頻 度を、中心気圧のしきい値別にとったもの。青が 現在気候実験、赤が将来気候実験。(下)現在実 験と将来実験の差。丸印は統計的に有意な変化を 表す。

均した風速で 6 時間移流させた時の周囲 300km 以内に次の時刻の低気圧が存在すれば それらを一続きの低気圧と見なす

ことにより抽出した。

図1はJRA25 再解析データ、120km モデル、 60km モデルでのそれぞれで、12-2 月において 48 時間以上持続した低気圧の2年分の経路を 示したものである。JRA25 再解析(左)と同じ解 像度の120km モデルの結果(中)は、頻度もよく 再現されている。この手法ではモデル解像度を 高くすると抽出される低気圧が増加する傾向 があり、60km モデル(右)ではJRA25 と比較す ると量的にやや多くなるが、分布については極 域を除きよく再現されている。なおこの手法で は熱帯低気圧も温帯低気圧と区別されること なく抽出されるが、今回調べる冬季の20N以 北では熱帯低気圧の数は温帯低気圧に比べ非 常に少ないので、とくに熱帯低気圧を除外する 作業はおこなっていない。

図 3 12 時間以上持続した低気圧の、(上) 現在 気候実験における頻度分布(個/年)。(下) 現在実 験と将来実験との差。

3. 結果

ここでは 60km モデルの現在・将来それぞれ 3 アンサンブルおこなった実験について、北半 球冬季における結果を示す。20km モデルにつ いてもよく似た結果が得られているが、アンサ ンブル実験をおこなっていないので、ここでは より有意な変化が得られる 60km モデルの結果 を示す。

図 2 は現在気候実験と将来気候実験で低気 圧の頻度を、中心気圧のしきい値別にとったも のである。しきい値に高い気圧の値をとってす べての低気圧を抽出した場合、将来気候実験で は発生数は有意に減少することがわかる。その 一方で、しきい値の気圧を 980hPa より低くし て強い低気圧のみを抽出した場合、将来気候実 験では発生数は有意に増加している。これはマ ルチモデルアンサンブルを用いた結果 (Lambert and Fyfe 2006)と一致するものである。 しきい値をより低くすると、増加の有意性はよ り顕著になる。発生の頻度分布(図 3)を見ると、 オホーツク海北部等の海氷変化の影響を受け る領域を除いた中高緯度全体で減少している。 この減少は下層での傾圧性の減少に対応する と考えられる。

他方、総観規模の擾乱の周期の変動は、とく に上層において増加する。図4(上)は2.5-8日の バンドパスフィルターをかけた Eddy Kinetic Energy の帯状平均について、現在気候実験か

図 4 (上) 2.5-8 日のバンドパスフィルターをかけたEddy Kinetic Energyの帯状平均についての、現在気候実験の値(コンター)および将来気候実験での変化(カラー)。単位はm²/s²。(下) 2-6 日バンドパスフィルターをかけた海面較正気圧の標準偏差の変化(hPa)。

ら将来気候実験への変化を示したもので、現在 のピークの高緯度側で増加し、上層でより増加 している。下層においても 60N 付近でやや増 加が見られる。図 4(下)は SLP について同じ周 期帯の変動の変化を見たもので、下層のストー ムトラックの変化を表している。日本の南岸や 北米大陸上などストームトラックの上流側で は減少の傾向が見られる一方で、ベーリング海 やイギリス沿岸などストームトラックの下流 側では増加の傾向が見られる。これらはマルチ モデルアンサンブルを用いた Yin (2005), Ulbrich et al. (2008) でも同様の傾向である。

このことからストームトラック中での発達 の仕方が変化しているものと考えられる。そこ で発達率を低気圧経路の前後の SLP の変化

$$\sigma_{\rm SLP} = -(\rm{SLP}_{t+} - \rm{SLP}_{t-})$$

で定義し、それがどのように変化するかを調べた。図5はその発達率の現在気候実験での分布

図 5 低気圧の発達率を場所ごとの平均値で、 (上)現在気候実験における値の分布、(下)現 在実験と将来実験との差(hPa/day)。

と将来変化を示したものである。現在気候にお けるストームトラックの赤道寄りではやや減 少が見られるのに対し、極寄りではとくに太平 洋において増加している。

下層の傾圧性は中緯度全体で弱まっている のでこのような発達率の増加には関連性が見 られないが、上層の傾圧性は異なった変化を示 している。図6(上)は400hPaにおける傾圧性 の現在実験から将来実験への変化を表したも のである。傾圧性の評価には maximum Eady growth rate

$$\sigma_{\rm BI} = 0.31 g N^{-1} T^{-1} \nabla T$$

を用いた。亜熱帯で減少が見られる一方で、高 緯度全体で増加が見られ、海上では北海道から その東方沖など、ストームトラックの極寄りで 増加している。すなわち図 5 での SLP で見た 発達率の変化とよく似た空間パターンとなっ ている。

図7は北太平洋域(130E-130W, 30N-60N)に おいて低気圧の平均発達率の将来変化パター ンと、各高度での傾圧性の将来変化パターンと の空間相関をとったものである。冬季のどの月 においても、下層の変化パターンとは相関が見 られないのに対し、400-500hPa 付近の傾圧性 の変化パターンが発達率の変化パターンと高 い相関を示している。400hPa での変化につい て

$$\Delta \sigma_{\rm BI} \sim \sigma_{\rm BI} \cdot \frac{\Delta(\nabla T)}{\nabla T} + \sigma_{\rm BI} \cdot \frac{\Delta(\nabla N^{-1})}{\nabla N^{-1}}$$

のように項に分けて項別の寄与を調べると(図 6 中下)、変化の多くの部分は温度傾度の変化 による寄与(右辺第1項)の大きい場所が北上し たこと、すなわちジェットが北上したことによ るものの寄与であることがわかる。ただし北西 太平洋については安定度が低下することによ るものの寄与(右辺第2項)も見られる。

4. まとめ

CMIP3 マルチモデルアンサンブルで予測される SST の将来変化を与えた高解像度大気モデルにおいて、冬季の低気圧活動の振る舞いの

変化を、現在気候と比較して調べた。地表面付 近では高緯度側で昇温の幅が大きいため、それ によって下層の傾圧性は弱まる。それに対応し て、下層で形成される低気圧の発生数は減少す ると考えられる。一方個々の低気圧の発達は強 化され、強い低気圧の増加、ストームトラック 活動度の増加につながっている。とくに北太平 洋においては中・上部対流圏でジェットの北 上・安定性の低下に伴う傾圧性の強まりが大き く、地上の低気圧の発達の強化と位置的な相関 が見られる。多くのモデルで温暖化実験では冬 季北半球では定在波が減少し、定在波による南 北熱輸送が減少する一方で傾圧波による南北

図 6 (上) 400hPaにおける σ_{BI}の現在実験と将来 実験との差。(中) そのうち温度傾度の変化によ る寄与、および (下) 安定度の変化による寄与。 単位は 1/day。

図 7 北太平洋域 (130E-130W, 30N-60N) において低気圧の平均発達率の将来変化パターンと、各高度での傾圧性の将来変化パターンとの空間相関。(左)1メンバーによる結果 (右)3メンバーアンサン ブルによる結果。

熱輸送が増加する。しかし低気圧の発生数は減 少するので、何らかの形で強い低気圧が増加し 熱輸送を担っていると考えられる。

上層の変化がどのようにして地上まで含め た個々の低気圧の振る舞いに影響しているの か、より詳細に調べる必要がある。上層由来の 低気圧、寒冷渦が増えて下層とカップルしやす くなることで下層由来の低気圧の発達が促進 されるのか、あるいはジェットの強さや傾圧帯 との相対的な位置の変化によって発達のしか たが変わるという可能性も考えられる。また大 西洋では太平洋ほど発達率の変化と上層の変 化との相関は見られないので、太平洋とは違う メカニズムが働いていることも考えられる。

謝辞

本研究は文部科学省 21 世紀気候変動予測革 新プログラム「超高解像度大気モデルによる将 来の極端現象の変化予測に関する研究」のもと、 地球シミュレータを用いて行われた。

参考文献

- Geng, Q. Z., and M. Sugi, 2003: Possible change of extratropical cyclone activity due to enhanced greenhouse gases and sulfate aerosols - Study with a high-resolution AGCM. J. Climate, 16, 2262-2274.
- Lambert, S. J., and J. C. Fyfe, 2006: Changes in winter cyclone frequencies and strengths simulated

in enhanced greenhouse warming experiments: Results from the models participating in the IPCC diagnostic exercise. Climate Dyn., 26, 713-728.

- Mizuta, R., K. Oouchi, H. Yoshimura, A. Noda, K. Katayama, S. Yukimoto, M. Hosaka, S. Kusunoki, H. Kawai and M. Nakagawa, 2006: 20km-mesh global climate simulations using JMA-GSM Model –mean climate states–. J. Meteor. Soc. Japan, 84, 165-185.
- Mizuta, R., Y. Adachi, S. Yukimoto, K. Kusunoki, 2008: Estimation of future distribution of sea surface temperature and sea ice using CMIP3 multi-model ensemble mean. Tech. Rep. Meteor. Res. Inst., 56. 28pp.
- Ulbrich, U., J. G. Pinto, H. Kupfer, G. C. Leckebusch, T. Spangehl, and M. Reyers, 2008: Changing Northern Hemisphere storm tracksin an ensemble of IPCC climate change simulations. J. Climate, 21, 1669-1679.
- Yin, J. H., 2005: A consistent poleward shift of the storm tracks insimulations of 21st century climate. Geophys. Res. Lett., 32, L18701, doi:10.1029/2005GL023684.