アンサンブル予報におけるモデル誤差の影響~EnKFを用いて~

小山博司(北大・環境科学)・渡部雅浩(東大・気候システム)

1 はじめに

大気の数値予報において初期値が不正確で あることによる予報の悪化を防ぐために初期値 アンサンブル法が用いられ、現在までにさまざ まな手法が考案されている。その内の1つで あるアンサンブル・カルマンフィルタ(Ensemble Kalman Filter: EnKF, Evensen 1994)は、 データ同化と初期値アンサンブル予報を融合し た手法であり、解析値と高度な初期摂動の作成 を同時に効率的に行う。近年では大気大循環モ デルや実際の観測データへの適用など実用化へ 向けた研究が行われている。

一方、数値予報モデルの不完全であることに よる予報の悪化を防ぐためにモデルアンサンブ ル法が用いられる。その手法は一般に不完全さ を持つ複数のモデル、パラメタリゼーション、 パラメータなどによる予報を平均することで 予報を改善させるものであり、初期値アンサン ブル法に比べて有効性に理論的な根拠を持つよ うな方法が確立していない。モデルアンサンブ ル法の一種であるマルチパラメータ法はパラメ タリゼーションにおいて異なる複数のパラメー タ値を用いる方法で、同じモデルかつ同じパラ メタリゼーションを使用するため他のモデルア ンサンブル法に比べてアンサンブルメンバー間 の不確定さは比較的小さい。しかし、パラメー タ値の与え方には任意性があるため適切なパラ メータを見出す必要がある。パラメータの推定 法として気候学的値を推定する方法やモデルバ イアスを修正する方法 (Annan and Hargreaves 2004: Beak et al. 2006) があるが、パラメタリ ゼーションにおける最適なパラメータ値を直接 推定し、その1か月予報での有効性を調べた研 究はない。

本研究の目的は、モデル誤差を持つような不 完全な予報モデルにおいて、1か月予報の改善 に有効なモデルアンサンブル(マルチパラメー タ)法を考案することである。

2 本研究の手法

予報変数の EnKF と予報変数とパラメータ を併せた EnKF から成る (図1)。ここで言うパ ラメータとはモデルのパラメタリゼーションに おけるパラメータのことである。

まず、予報変数の EnKF のサイクルについ て述べる。後述の予報変数とパラメータを併せ た EnKF により求められる M 個のパラメータ 値のそれぞれに対して、初期値 N メンバーの 予報を行う。つまり、この予報は初期値アンサ ンプル予報とモデルアンサンブル予報を組み合 わせた初期値・モデルアンサンブル予報 (N × M メンバー)となる。この予報値 $\mathbf{x}_{ij}^{f}(t)$ (i =1,2,...,I; j = 1, 2, ..., J; ここで I は初期値 メンバー数、J はパラメータメンバー数を表す。)を異なるパラメータ間で平均した

$$\hat{\mathbf{x}}_{i}^{f}(t) = \frac{1}{J} \sum_{j=1}^{J} \mathbf{x}_{ij}^{f}(t) \quad (i = 1, 2, \cdots, I) \quad (1)$$

を EnKF へ取り込み、予報変数の観測値を用い て予報変数の解析値と次の予報のための N メ ンバーの初期値を作成する。作成された N メン バーの初期値を用いて、前回と同様に初期値・ モデルアンサンブル予報を行い再び EnKF を行 う。このような解析・予報サイクルを繰り返し 最適な予報変数の解析値と摂動を求めていく。

図 1: 本研究の手法の模式図

次に、予報変数とパラメータを併せた EnKF について述べる。これは前述の予報変数の EnKF よりも長い時間サイクルで行う。その目的はサ ンプリングエラーおよび予報変数の短周期成分 を除去することである。前述の予報値 $\mathbf{x}_{ij}^{f}(t)$ を 異なる初期値間で平均し、さらに時間平均した

$$\overline{\tilde{\mathbf{x}}}_{j}^{f}(t) = \frac{1}{T} \sum_{t'=t-a\Delta T}^{t} \left(\frac{1}{I} \sum_{i=1}^{I} \mathbf{x}_{ij}^{f}(t') \right) \qquad (2)$$
$$(j = 1, 2, \cdots, J)$$

と推定したいパラメータ $\mathbf{p}_{j}(t)$ をそのまま EnKF へ取り込み、時間平均した予報変数の観測値を 用いてパラメータの解析値とパラメータの摂動 を作成する。ここで ΔT は予報変数の EnKF における同化の時間間隔で、a は平均する予報 値のサイクル数である。パラメータが推定され る度に予報モデルのパラメータ値を更新して いく。

本手法の最大の特徴は、時間変動する最適な パラメータ値が動的に推定可能であることと同 時にモデルアンサンブル予報のためのパラメー タ摂動が得られることである。ここで説明した 一連の枠組みをまとめて pEnKF と呼ぶことに する。

3 使用するモデル

3.1 完全モデル

以下の Lorenz'96 モデル (Lorenz 1996) をモ デル誤差を含まない完全モデルとする。

$$\frac{dx_m}{dt} = x_{m-1}(x_{m+1} - x_{m-2}) - x_m + F - \frac{hc}{b} \sum_{n=1}^N y_{m,n}$$
(3)

$$\frac{dy_{m,n}}{dt} = cby_{m,n+1}(y_{m,n-1} - y_{m,n+2}) - cy_{m,n} + \frac{hc}{b}x_m$$
(4)

ここで、添字 $m = 1, 2, \dots, M, n = 1, 2, \dots, N$ は格子点を表し、h, c, b はローレンツパラメー タ、F は強制である。 $x \ge y$ は共に周期境界条件 $(x_{m-M} = x_m, x_{m+M} = x_m, y_{m+M,n} = y_{m,n}, y_{m,n-N} = y_{m-1,n})$ を満たす。 3.2 不完全モデル

モデル誤差を持つような不完全モデルを以下 のように作成する。(3)式の右辺最後の項

$$-\frac{hc}{b}\sum_{n=1}^{N}y_{m,n}$$
(5)

を x_m とパラメータ係数 α, β を用いて表した項

$$\alpha + \beta x_m \tag{6}$$

に置き換えることによって得られる

$$\frac{dx'_m}{dt} = x'_{m-1}(x'_{m+1} - x'_{m-2}) - x'_m + F + \alpha + \beta x'_m$$
(7)

を不完全モデルの式とする (Smith 2000; Orrell 2003)。ここで、「 ′ 」は不完全モデルにおける 変数であることを示す。

y は x に比べて格子間隔が狭く、小さな振幅 で速く変動することから、(5)を(6)に置き換 える操作は y のパラメタリゼーションと考える ことが出来る。これは、大気大循環モデルに当 てはめて考えると、x は直接計算可能な予報変 数を表し、y は直接計算出来ないサブグリッド スケールの現象の変数を表していると見立てる ことが出来る。

3.3 設定

本研究では、変数の数をM = 8, N = 4とし、強制およびローレンツパラメータの値 はF = 10, h = 1 (Smith 2000; Orrell 2003; Roulston et al. 2003) とした。 $c \ge b$ は

$$c = b = 2.5 \sin\left(\frac{2\pi t}{T}\right) + 7.5 \tag{8}$$

の形で与えた。これは完全モデルと不完全モデ ルの間のモデルの不完全さに明瞭な長周期的な 変動を加えるためである。今後、特に明記しな い限り周期 T = 90 日¹の結果を示す。上記の条 件下ではいずれも解はカオス的な振舞いをする ことを確認している。また、積分の時間間隔は x, y に対してそれぞれ 0.005, 0.0005 で、4 次の Runge-Kutta 法を用いて積分を行った。

¹誤差の成長速度の観点からこのモデルでの時間 0.2 が現実大気の1日に相当することが知られている。今後 はこの現実大気の時間に換算した時間を示す。

4 実験設定

完全モデルにおける単一メンバーの時間発展 を真値として定義し、その真値に平均 0、標準 偏差 $\sigma_x = 1$ 、 $\sigma_y = 0.1$ のガウシアンノイズを 加えたものを観測値とした。

使用した EnKF の手法は逐次的アンサンブル 平方根フィルタ (Serial EnSRF, Whitaker and Hamill 2002) である。観測は全ての格子点で得 られるものとした。予報変数の同化の時間間隔 は 0.05 で、これは現実大気における 6 時間を 想定している。また、EnKF を安定して動作さ せるために共分散行列の局所化 (Gaspari and Cohn 1999) を導入した。

予報変数の EnKF で得られる初期値を 1 か 月先まで延長することにより 1 か月初期値アン サンブル予報または初期値・モデルアンサンブ ル予報行った。

5 結果

最初に初期値アンサンブル予報のみの結果を 示した後、pEnKFを導入した結果を示す。

5.1 初期値アンサンブルのみ

図 2(a) は、完全モデル(細線)と一定のパラ メータ値を用いた不完全モデル(太線)におけ る予報期間と予報誤差(RMS予報誤差;2乗平 均平方根予報誤差)の関係を示したもので、図 2(b)は不完全モデルの予報誤差から完全モデ ルのそれを引いたものである。完全モデルと不 完全モデルの予報誤差はそれぞれ21日、17日 予報で気候値予報(破線)に漸近することから 予報の限界はその付近であることが分かる(図 2b)。また、完全モデルと不完全モデルの予報 誤差の差は6日予報付近をピークにして予報期 間後半まで値を持ち続けることが分かる。

5.2 初期値アンサンブルのみ(統計的パラ メータ)

次に不完全モデルにおいて一定のパラメー タ値ではなく時間変動する最適なパラメータ

図 2: (a) 完全モデル (細線)、一定のパラメータ値 を用いた不完全モデル (太線)、気候値予報 (破線) における予報誤差。横軸は予報期間 (日)。メンバー 数は 30 で、30 年平均値。不完全モデルのパラメー タ値は (5) 式の線形回帰により求めた。(b)(a) の不 完全モデル (太線) および気候値予報 (破線) の予報 誤差から完全モデルのそれを引いたもの。

図 3: ある期間における (a) ローレンツパラメータ c,b、(b) パラメータ の統計的パラメータ推定値、 (c) パラメータ の統計的パラメータ推定値の時系 列。(b) と (c) における太実線、細破線はそれぞれ 5 日、1 日の Time-window で計算された結果。

値を用いることで予報が改善するかどうかを調 べる。完全モデルの(5)式を(6)式の形で線形 回帰することにより統計的に求めたパラメータ 値(統計的パラメータ推定値と呼ぶ)を用いた 予報を行う。これは完全モデルが既知の場合に 限り計算可能なものであり、現実的には計算不 可能な手法であるため、あくまで検証用として 用いる。計算する際に用いる時間範囲をTimewindow と呼ぶことにする。図3はある期間の ローレンツパラメータ c,b およびパラメータ

図 4: 統計的パラメータ推定値を用いた予報の予報 誤差から一定のパラメータ値を用いた予報のそれを 引いたもので、横軸は Time-window(日)。(a) は と の両方が統計的パラメータ推定値の場合。(b) は が統計的パラメータ推定値で、 が一定値の場 合。(c) は が統計的パラメータ推定値で、 が一 定値の場合。いずれも、2日、7日、15日予報がそ れぞれ点線、実線、破線で示されている。

と の時系列を示している。 はほぼランダム 的に変動しているのに対し、 は *c*,*b* に対応し た長周期的な周期性を持つことが分かる。

図4は統計的パラメータ推定値を用いた予 報の予報誤差から一定のパラメータ値を用いた 予報のそれを引いた結果を示している。横軸は Time-window(日) である。図 4(a) より Timewindow が短いほど予報が改善し、サンプリン グエラーなどの影響を受けていないことが分か る。また、7日予報(実線)で改善の効果が特に 大きいことが分かる。 のみに統計的パラメー タ推定値を用いた場合 (図4b) ではほとんど予 報が改善しないのに対し、 のみに統計的パラ メータ推定値を用いた場合 (図 4c) では と の両方に統計的パラメータ推定値を用いた場合 (図 4a) とほぼ同等である。よって予報の改善に 対して有効なパラメ-タは であることが分か る。これは図3で に比べて では時間変動に

図 5: ある期間における pEnKF により推定された パラメータ (太線) と統計的パラメータ推定値の時 系列 (細線)。いずれも 。pEnKF において、初期 値メンバー数 20、パラメータメンバー数 5、総メン バー数 100 である。

図 6: (a)pEnKF を適用した場合の適用しない場合 (100 メンバーの初期値アンサンプル)からの予報誤 差の改善率。(b) スプレッドと予報誤差の比。いず れも、太線が pEnKF(初期値メンバー数 20、パラ メータメンバー数 5、総メンバー数 100)を適用し た場合、細線が pEnKF 非適用の初期値アンサンプ ル(メンバー数 100)のみの場合、破線が気候値予報 の場合。横軸は予報期間(日)。

ランダム的な成分よりも長期的な成分が大きい ことに起因すると考えられる。次節では は一 定値とし、 のみを pEnKF により推定する。

5.3 初期値・モデルアンサンブル (pEnKF)

図5はpEnKFにより推定されたパラメータ のある期間の時系列(太線)を示している。細 線は前節の統計的パラメータ推定値の におけ る時系列であり、これを真に近いパラメータの 時系列と考える。両者の長周期的変動がほぼ一 致することから、pEnKFによりほぼ90日周期 の長周期的な変動が推定出来ていることが分か る。また両者の期間を通した相関係数も0.56と 比較的大きい。

図 6(a) は pEnKF を適用した場合の適用しな い場合 (初期値アンサンブルのみ) からの予報 誤差の改善率を示している。総メンバー数は共

図 7: EnKF を適用した場合の適用しない場合か らの予報誤差の改善率。太線が pEnKF(初期値メン バー数 20、パラメータメンバー数 5、総メンバー数 100)を適用した場合で、細線が pEnKF で推定さ れたパラメータを用いるがモデルアンサンブルは行 わない場合(初期値メンバー数 20)、破線が統計的 パラメータ推定値を用いた場合(初期値メンバー数 20)。横軸は予報期間(日)。

に同じ100 メンバーである。5 日予報以降の予 報誤差が最大で3%程度改善していることが分 かる。図 6(b) はスプレッドと予報誤差の比を 示しており、この値が1に近いほど確率密度分 布の推定が適切であると考えられる。 pEnKF を適用した場合 (太線) ではこの比は適用しな い場合(細線)に比べてずっと1に漸近してい ることが分かる。これは主にモデルアンサンブ ルによる効果である。なお、総メンバー数をさ らに増大させていく (図示せず) と、pEnKF を 適用しない初期値アンサンブルのみ場合では予 報が改善するどころか逆に悪化²するのに対し て、初期値・モデルアンサンブル予報の場合で は予報は改善する。このことは十分なメンバー 数がとれるなら初期値アンサンブルのみよりも 初期値・モデルアンサンブル予報の方が有効で あることを示している。

pEnKFでは最適なパラメータの推定と初期 値・モデルアンサンブル予報が併せて行われる ため、図6(a)の結果には最適なパラメータが推 定された効果とモデルアンサンブルによる効果 の両方が含まれている。そこでこれらのどちら の効果が予報の改善に対して有効であるのかを 調べる。図7は図6(a)と同様にpEnKFを適用 した場合の適用しない場合(初期値アンサンブ ルのみ)からの予報誤差の改善率を示している。 太線は通常通りpEnKFを適用した場合(図6a の太線と同一)でパラメータ推定とモデルアン

図 8: モデルの不完全さの周期((8)式)がT = 360 日であることを除いては図7(T = 90日)と同様。

サンブルの両方の効果を含む。細線は pEnKF で推定されたパラメータを用いるがモデルアン サンブルを行わない場合である。初期から1週 間先くらいまでの予報期間では、モデルアンサ ンブルあり(太線)となし(細線)の改善率の差 がほとんどないことから主にパラメータを推定 した効果により予報が改善している。ただし統 計的パラメータ推定値を用いた場合(破線)に比 べると改善率はかなり小さいことからパラメー タの推定精度はそれほど良いとは言えない。1 週間以降の予報期間ではモデルアンサンブルな しの場合(細線)でも予報は改善しているが予 報期間の後半に行くにつれてその効果は次第に 小さくなる。モデルアンサンブルあり(太線)と なし(細線)の改善率の差を見ると、予報期間 の後半に行くにつれて大きくなっており、モデ ルアンサンブルは予報期間の後半ほど有効であ ることを示している。

最後に、モデルの不完全さの周期をより長く した場合の結果を示す。図8は(8)式において T = 360日であることを除いては図 7(T = 90)日)と同様の図である。モデルアンサンブルな し(細線)の改善率が統計的パラメータ推定値 を用いた場合(破線)と同程度であり、T = 90日の場合に比べてパラメータの推定精度がか なり良いことが分かる。一方でモデルアンサン ブルあり(太線)となし(細線)の改善率の差を 見ると、T = 90日の場合と同様の傾向を示し ており、モデルアンサンブルは予報期間の後半 ほど有効である。よって、パラメータの推定は 特にモデルの不完全さの周期が長い場合に予報 の改善に対して有効であり、モデルアンサンブ ルはモデルの不完全さの周期にあまり依存せず 1週間以降の予報の改善に有効であることが分 かる。

²モデルの自由度に比べて初期値メンバー数が多すぎるためと考えられる。

EnKFを応用したパラメータを含めた同化・ 予報システムを構築した (pEnKF)。この最大 の特徴は最適なパラメータ推定と初期値・モデ ルアンサンブル予報を行うことである。モデル 誤差をもつ Lorenz'96 モデルにおいて pEnKF を適用した結果、最適なパラメータの推定が可 能であり、1か月予報においても5日予報以降 で初期値アンサンブルのみ場合よりも予報が改 善することが分かった。特に、予報期間の前半 ではパラメータ推定の効果、後半ではモデルア ンサンブルの効果により予報が改善していると 考えられる。

今後は、大気大循環モデルへ本手法を適用し その有効性を調べ行きたい。その中で推定しや すいパラメータとしづらいパラメータの違い をパラメタリゼーションの構造に着目して理解 することが必要である。また、パラメータ摂動 の構造の解析やより効果的なパラメータ推定法 (例えば、より長期の予報値を用いてパラメー タを推定するなど) への改良も行っていきたい。

7 謝辞

今回の研究集会の参加にあたり、東京大学気 候システム研究センターより旅費の援助を受け ました。感謝致します。図の作成には DCL(地 球流体電脳ライプラリ)を使わせて頂きました。

参考文献

- Annan, J.D. and Hargreaves, J.C., 2004: Efficient parameter estimation for a highly chaotic system. *Tellus*, 56A, 520-526.
- Baek, S.-J., Hunt, B. R., Kalnay, E., Ott, E. Szunyogh, I. 2006: Local ensemble Kalman filtering in the presence of model bias. *Tellus*, **58A**, 293-306.
- Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5), 10143-10162.

- Gaspari, G. and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. *Quart. J. Roy. Meteor. Soc.*, 125, 723–757.
- Lorenz, E. 1996: Predictability A problem partly solved. Proc. Seminar on Predictability, Shinfield Park, Reading, United Kingdom, European Centre for Medium-Range Weather Forecasting, 1–18.
- Miyoshi, T., 2005: Ensemble Kalman filter experiments with a primitive-equation global model. Doctoral dissertation, University of Maryland, College Park, 197pp.
- Orrell, D., 2003: Model error and predictability over different timescales in the Lorenz'96 systems. J. Atmos. Sci., 60, 2219–2228.
- Roulston M. S., and L. A. Smith, 2003: Combining dynamical and statistical ensembles. *Tellus*, 55A, 16–30.
- Smith, L. A., 2000: Disentangling uncertainty and error: On the predictability of nonlinear systems. Nonlinear Dynamics and Statistics, A. Mees, Ed., Birkhauser, 31–64.
- Whitaker, J. S. and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. *Mon. Wea. Rev.*, **130**, 1913– 1924.