地球温暖化による降水量変化予測の排出シナリオ依存性

¹ 塩竈秀夫, ¹高橋潔, ^{1,2}永島達也, ¹野沢徹, ^{1,2,3}江守正多 ¹ 国立環境研究所 ² JAMSTEC地球F ³ 東大CCSR

1. はじめに

将来の地球温暖化による影響を評価す るために,降水量変化の予測は気温変化 の予測とならんで重要である.一般には, 気温の上昇に伴い大気中の水蒸気量が増 え,それによって降水量は全球平均では 増加すると予測されている.しかし,ど れだけの降水量が変化するかに関しては, 気温変化に関するよりも大きな不確実性 が存在する[Meehl et al., 2007].

気候変化予測の不確実性をもたらす要因としては,(1)内部変動,(2)温室効果 ガスや人為起源エアロゾル排出量などの 排出シナリオの不確実性,(3)気候感度や 炭素循環フィードバック等のモデルの不 確実性などがあげられる.2100年までの 気候変動を考える場合,(2),(3)の不確 実性が重要であると考えられている.本 研究では,排出シナリオの不確実性に伴 う降水量変化予測の不確実性を議論する.

単一の気候モデルで気候変化を予測す る場合でも,排出シナリオの違いによっ て、2100 年までの気温上昇予測は大きく ばらつく、単純に考えて、気温上昇量が 違えば、大気中の水蒸気量の増加量が異 なり、降水量変化にも影響があらわれる. さらに,単位気温変化あたりの降水量変 化量も、排出シナリオに大きく依存する ことがわかってきた. 例えば, IPCC AR4 に貢献した CMIP マルチモデルの平均で見 た場合、単位気温変化あたりの降水量変 化は B1 シナリオでは 1.88%/K だが, A2 シナリオでは 1.45%/K と異なる[Meehl et al., 2007]. しかし、このシナリオ不確 実性の原因は明らかになっていない. こ こでは、CCSR/NIES/FRCGC の大気海洋結 合モデル MIROC3.2 [K-1 Model Developers, 2004]を用いて様々な実験を 行うことで、単位気温変化あたりの降水 量変化率のシナリオ不確実性の要因を調 べる.

2. モデルと実験設定

MIROC 3.2 (大気水平解像度 T42)を用い て,20世紀気候再現実験[*Nozawa et al.*, 2005]の2000年を初期値として,IPCC SRES A2シナリオ(温室効果ガス排出量 大・エアロゾル排出量大)とB1シナリオ (温室効果ガス排出量小・エアロゾル排出 量小)[*Nakicenovic, et al.*,2000]に沿 った2001年から2100年までの積分を行 った.

SRES シナリオで考慮する外部要因は, 温室効果ガス濃度(オゾンは別),硫酸性 と炭素性のエアロゾル排出量,成層圏・ 対流圏のオゾン濃度変化である(図1参 照).それぞれの外部要因が降水量変化 率に及ぼす影響を評価するため,個々の 外部要因だけを変化させた実験を行った. また2000年時点で放射強制力にインバラ ンスがある影響を評価するために,外部 要因を2000年時点で固定した実験も計算 した.これらの実験を表1にまとめる. 以上の実験は,複数の初期値アンサンブ ルメンバーを積分した.それぞれの実験 が含むアンサンブル数も表1に示す.

MIROC3.2 モデルでは、雲粒数密度(U_c) を決める際に、次の式で水溶性エアロゾル(sea salt, sulfate, organic carbon) 濃度(U_c)が影響する:

 $U_c = \varepsilon U_a U_m / (\varepsilon U_a + U_m),$ (1) ここで $\varepsilon \geq U_m$ は定数である.大規模凝結 過程の計算において,雲粒数密度の変化 は雲水から降水への変換効率 (P_c)へ影響 を及ぼす (エアロゾルの第 2 種間接効 果) [Berry, 1967; Takemura et al., 2005]:

 $P_e = \alpha \rho l^2 / (\beta + \gamma U_c / \rho l),$ (2) ここで α , β , γ は定数で, ρ は大気密 度, 1 は雲水混合比である.

3. 結果

図2にA2,B1実験での全球平均地上気 温と全球平均降水量の時間変化を示す. A2実験はB1実験の約2倍の気温上昇を予 測しているにもかかわらず,降水量の増 加量はほぼ同じである.これは単位気温

Ensemble	Descriptions	Ensemble
name		size
A2	A2 scenario runs	3
A2GHG	well-mixed GHG only runs under A2 scenario	3
A2SUL	Sulfate aerosol only runs under A2 scenario	3
A2CRB	Black and organic carbon aerosol only runs	10
	under A2 scenario	
A2OZN	Stratosphere and troposphere ozone only runs	3
	under A2 scenario	
B1	B1 scenario runs	3
B1GHG	well-mixed GHG only runs under B1 scenario	3
B1SUL	Sulfate aerosol only runs under B1 scenario	3
B1CRB	Black and organic carbon aerosol only runs	10
	under B1 scenario	
B1OZN	Stratosphere and troposphere ozone only runs	3
	under B1 scenario	
Y2K	All external forcing factors are fixed at the year	10
	2000 (year 2000 commitment runs)	

表1:実験名とその説明、アンサンブル数.

変化あたりの降水量変化率が約2倍も異なることを示している.

図 3 は、外部要因切り分け実験におけ る気温・降水量の変化である. 2000 年時 点で放射強制力にインバランスがあるこ との影響を除くために、Y2K 実験の変化 を引いている.気温・降水量とも,切り 分け実験を足し合わせたものは A2, B1 実 験とよく一致して加法性が保たれており, 線形に解釈することができる. 温室効果 ガス濃度とオゾンの濃度増加は気温上昇 をもたらし、炭素性エアロゾルの増加は 気温を低下させる.硫酸性エアロゾルは. カラム量が増加している間は冷却に働く が カラム量が減少してくると過熱に働 く. A2GHG 実験では、B1GHG 実験よりも降 水量の変化が大きく,両者の単位気温変 化あたりの降水量変化率はほぼ等しい. つまり、シナリオによる気温上昇の速度 差は、降水変化率の違いを説明しない. A2 実験の小さな降水量変化率は、炭素性 エアロゾルによる大きな降水量減少によ

ってもたらされている. A2 シナリオでは, 図 1 に示すように炭素性エアロゾルが大 きく増加する. さらに炭素性エアロゾル による単位気温変化あたりの降水量変化 率が,温室効果ガスによるものより大き いために, A2 実験での降水量変化が小さ く押さえられたことがわかる.

CRB 実験で降水量変化率が大きい理由 を調べるために、GHG 実験とCRB 実験の降 水量と水蒸気量のパーセント変化を比較 する(図 4). 全球平均水蒸気量は、気温 が変化したとき、相対湿度一定で *Clausius-Clapeyron*から想定される変化 を起こすことが良く知られている. その ため GHG 実験では気温上昇に伴い水蒸気 量が増加し、CRB 実験では気温低下に伴 い水蒸気量が減少する.興味深いことに、 GHG 実験では降水量の変化は水蒸気量の 変化より小さい[*Allen and Ingram*, 2002] のに対して、CRB 実験では降水量変化が 水蒸気量変化に近い. この性質の違いが、 降水量変化率の差と関係している.

図 1: (a) CO2 濃度変化(ppmv). (b)硫酸性 エアロゾルと炭素性(black and organic carbon)エアロゾルの全球平均カラム量変 化 (1981-2000 年平均からの差; 10⁻⁶Kg/m²). (c)オゾン濃度の成層圏(ppmv)と 対流圏(ppbv)での変化. 実線は A2, 破線 は B1.

Held and Soden [2006] と *Vecchi and Soden* [2007]は,温室効果ガス強制力に 対する降水量と水蒸気量の変化量が異な る理由として,上昇流の強さの変化が重 要であることを示した.彼らは,ほとん どの水蒸気は大気下層に存在するため,

図 2: (a)地上気温変化(K)と(b)降水量 のパーセント変化(%). それぞれ 1981-2000 年平均からの偏差を10年 平均したもの. 実線は A2, 破線は B1, 点線は Y2K 実験を表す.

降水に変換されるには上昇流が必要であり、500-hPa 面での上昇流の積算量を ω^{\dagger} とすると、

 $\Delta P / P = \Delta q / q + \phi \Delta \omega^{\uparrow} / \omega^{\uparrow},$ (3)という関係が成り立つと仮定した. ここ 正しければ,降水量と水蒸気量のパーセ ント変化量の差は、上昇流が減少するこ とによって説明できる. Vecchi and Soden [2007]は, CMIP3 マルチモデルの SRES A1B 実験のデータを分析することで、この関 係がよく成り立つことを示した.しかし, 本研究のように第2種間接効果を含むモ デルでシナリオ間の不確実性を考える場 合, 上昇流によって自由大気に運ばれた 水蒸気が雲水に変わる過程だけでなく, 雲水が降水に変わる効率を考慮する必要 がある.式2のように、降水効率は雲粒 数密度 U。に反比例するため, $\Delta P / P = \Delta q / q + \phi \Delta \omega^{\dagger} / \omega$ $+ \varphi \Delta U_c / U_c$, (4)

図 3: 黒線は全球平均地上気温の(a)A2 と(b)B1 での変化(K)と,全球平均降水量の(c)A2 と(d)B1 でのパーセント変化(%). GHG(赤線), SUL(黄色線), CRB(緑線), 0ZN(水色線)と切り分け実験の総和(青線)を共に示す. それぞれ 1981-2000 年平均からの偏差を 10 年平均したもので, Y2K 実験を引いている.

という比例関係が想定される.ここで φ は負の比例係数である.

図5に ω ^f とU_cのパーセント変化を示す. 気温が上昇するA2GHG,B1GHG実験では上 昇流が弱まり,逆に気温の低下する A2CRB,B1CRB実験では上昇流が強まる. どちらの実験でも、上昇流は水蒸気量の 変化と逆向きに変動し、水蒸気量変化に よる降水への影響を打ち消すように働い ている.一方,A2CRB,B1CRB実験では、 雲粒数密度は増加し、その変化は特に A2CRB実験で大きい.これは、炭素性エ アロゾルの増加に伴い雲粒数密度が増加 し(φ AU_c/U_cが負に大きくなり),降水量 の減少に寄与したことを示唆している.

水蒸気量,上昇流,雲粒数密度の変化 が降水量変化に及ぼした影響を定量的に 評価するために,式4を重回帰式とみな して回帰係数*φ*,*φ*を求めた.これらの 回帰係数でスケーリングした各項の降水 量変化への寄与を図6に示す.A2GHG, B1GHG 実験では、水蒸気量増加による効 果を上昇流減少の効果が大きく打ち消す ことで、降水量の変化が *Clausius-Clapeyron*から想定されるより も小さくなっている.一方、A2CRB, B1CRB 実験では、水蒸気量減少の効果を 一部上昇流強化が打ち消しているが、第 2種間接効果が雲水から降水への変化効 率を低下させるために、降水量の減少量 は水蒸気量の減少量と近くなっている.

重回帰式から推定した第2種間接効果 の影響の精度を調べるために、モデルコ ード内で"第2種間接効果の降水への直 接影響"を診断する方法を開発した.具 体的には次の手順で診断する:

(i) 20年移動平均 U_cの Y2K 実験と CRB
実験での比(Y2K/CRB)を求める.
(ii) 再び CRB 実験を積分するが、このとき大規模凝結過程スキームを 2
回計算する.1回目の計算では、式1
で計算された U_cに(i)の係数をかけ

図 4: 鉛直積算水蒸気量(%; 実線)と降水量(%; 破線)の 1981-2000 年平均からのパーセント 変化. 10年平均. Y2K 実験を引いている. 上図は(a) A2GHG と(b)B1GHG で, 下図は(c) A2CRB と(d)B1CRB.

てから大規模凝結過程の降水量を計算し、出力する.2回目は、1回目の 計算結果を破棄した上で通常の計算 を行う.これによって、U_cの長期変 化成分がY2K実験とCRB実験に等し い場合の降水量がそれぞれ求められる.

(iii) (ii)で求まった 2 種類の降水 量の差をとることで,フィードバッ クを含まない"第2種間接効果の降 水への直接影響"を診断することが できる.

ここでは、1 アンサンブルメンバーのみ 積分した.このようにして求めた第2種 間接効果の影響は、重回帰式から推定し たものと非常によく一致する(図 6c, d の 黒点線).これは、少なくとも MIROC モデ ルに関しては、式4の回帰式による見積 もりの精度が高いことを示唆している.

4. 結論と議論

SRES A2シナリオでの単位気温変化あ

たりの降水量変化率が, B1 シナリオのも のよりも小さい原因を調べた.外部要因 を切り分けた実験を行った結果, A2 シナ リオでの炭素性エアロゾル排出量が大幅 に増加し,さらに炭素性エアロゾル強制 力に対する降水量変化率が温室効果ガス に対するものよりも大きいことが原因で あるとわかった.この炭素性エアロゾル 強制力に対する大きな降水量変化率は, 第2種間接効果によって雲水から降水へ の変換効率が低下することによってもた らされていた.

以上の結果は、地球温暖化の影響評価 や緩和策の研究にとっても大きな意味を 持つ.これらの研究では、様々な排出シ ナリオや安定化シナリオを調べるために、 パターンスケーリングの手法が広く用い られている.本研究の結果は、全外部要 因を含んだ大気海洋結合モデル実験の結 果からスケーリングパターンを作成した 場合、全球平均で見ても大きな誤差を生 じることを示している.

図 5: 上図は(a) A2GHG, B1GHG と(b)A2CRB, B1CRB での $\Delta \omega^{\uparrow} / \omega^{\uparrow}$ (%). 下図は(c) A2GHG, B1GHG と(d)A2CRB, B1CRB での $\Delta U_c / U_c$ (%). 1981-2000 年平均からのパーセント変化の10年平均で, Y2K 実験を引いている. 実線は A2GHG, A2CRB で破線は B1GHG, B1CRB.

5. 謝辞

本研究は, 文部科学省21世紀気候変動 予測革新プログラムと環境省地球環境研 究総合推進費(S-5)の支援により実施さ れた.

参考文献

- Allen, M.R., and W.J. Ingram (2002): Constraints on future changes in climate and the hydrologic cycle, Nature, 419, 224-232.
- Berry, E. X. (1967), Cloud droplet growth by collection, *J. Atmos. Sci.*, 24,688-701.
- Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. *J. Climate*, **19**, 5686-5699.

- K-1 Model Developers (2004): K-1 coupled GCM (MIROC) description, K-1 Tech. Rep. 1, edited by H. Hasumi and S. Emori, 34 pp., Cent. For Clim. Syst. Res., Univ. of Tokyo, Tokyo.
- Meehl, G. A., et al. (2007): Global climate projections, in Climate change 2007: The physical science basis, edited by S. Solomon et al., chap. 10, Cambridge Univ. Press.
- Nakicenovic, N., et al. 2000: Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change, 599 pp., Cambridge Univ. Press, New York.
- Nozawa, T., T. Nagashima, H. Shiogama, and S. A. Crooks, 2005: Detecting natural influence on surface air temperature change in the early

図 6: (a) A1GHG, (b) B1GHG, (c) A2CRB, (d) B1CRB 実験における降水量変化(黒実線)への水蒸気量変化(赤線), 上昇流変化(緑線), 雲粒数密度変化(青線)の寄与と総和(黒破線). 1981-2000 年平均降水量からのパーセント変化(%)の 10 年平均値で示す. 下図の黒点線は, 大規模凝結過程を2度積分して診断したエアロゾル第2種間接効果の降水量への直接影響.

twentieth century, *Geophys. Res. Lett.*, 32, L20719, doi:10.1029/2005 GL023540.

Takemura, T., T. Nozawa, S. Emori, T. Y. Nakajima, and T. Nakajima (2005), Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model, *J. Geophys. Res.*, 110, D02202, doi:10.1029/2004JD005029.

Vecchi, G. A., and B. J. Soden, 2007: Global warming and the weakening of the tropical circulation. J. Climate, 20, 4316-4340.