榎本 剛 (地球シミュレータ)

要旨

2005年6月下旬,梅雨前線の北上が遅れ,日本の南岸に停滞していた.6月26日, 前線は亜熱帯高気圧の強化に伴って,急に消滅した.華中で小低気圧が発生し,黄海, 朝鮮半島から日本海へ進み,梅雨前線が再形成された.ALERA(AFES-LETKF実験 的再解析)を用いて,この梅雨前線の消滅と再形成の予測可能性について調べた.

1. はじめに

梅雨前線は,時空間的な多スケール構造 (Ninomiya and Akiyama 1992)を持つ現象である. 気候学的には,梅雨前線は5月末から6月初め に25°N付近で形成され,徐々に北上し7月の下 旬に40°N付近で消滅する (Ninomiya and Murakami 1987). このような気候学的なふるまい に加えて,低気圧や亜熱帯高気圧の影響を受け ながら,梅雨前線の活動は日々変動する. 活発 期には,発達したメソ擾乱やそれに含まれる対 流セルにより局地的に強い降水がもたらされ る. 不活発期には,前線が不明瞭になることが ある.

本研究では,2005年6月にみられた梅雨前線 の消滅と再形成について調べた.図1は,この現 象が見られた時期に対応する,1日毎のGOES-9 からの赤外画像である.6月24日に梅雨前線 は,南シナ海,東シナ海から日本列島南岸に延 びている.6月25日には,帯状の雲は日本から 離岸しているが,この雲は相当温位傾度を伴っ ていない.後で示すように相当温位傾度を伴っ ていない.後で示すように相当温位傾度は,日 本列島上にある(図5).大陸には,強い対流活動 を示す明域があり,これが25~26日にかけて 低気圧として発達する.26日にはもとの梅雨前 線は消滅し,27日迄に黄海に別の梅雨前線が形 成され,日本海に延びてくる.

本研究では、この現象を大規模場との関連や 予測可能性の観点から調べる.以下、第2節で 解析に用いたデータを簡単に紹介する.第3~5 節は本稿の中心となる部分で、それぞれ大規模 場との関連、前線の解析、不確定性の解析を行 なう.最後に本研究のまとめを行ない、アンサ ンブル再解析を用いた研究について議論する.

2. ALERA: 実験的アンサンブル再解析

本研究では, ALERA (AFES-LETKF experimental ensemble reanalysis; Miyoshi et al. 2007) を用いた. このデータは, AFES (Atmospheric General Circulation Model for the Earth Simulator, Numaguti et al 1997; Ohfuchi et al. 2004; Enomoto et al. 2007) と局所アンサンブル変換 カルマンフィルタ (LETKF) からなる同化シス テムで, 実際の帯域観測データを同化して作成 された. 同化システムの詳細と基礎実験につい ては Miyoshi and Yamane (2007) を, アジア・モ ンスーンを中心とした循環場の再現性について は榎本他 (2006) を参照されたい.

2005 年 5 月から 2007 年 1 月初めの観測デー タを 4 次元化された LETKF を使って, T159L48 M40 (水平解像度約 80km, 鉛直 48 層, 40 メン バー)の AFES に同化した.水平解像度 1.25°, 鉛 直 17 層の等圧面アンサンブル平均とスプレッド 等は,地球シミュレータセンターから公開され ており,研究目的なら誰でも無償で利用できる.

既存の再解析と比較して ALERA は, 流れに 応じた解析誤差がアンサンブル・スプレッドと して見積ることができるという特長がある. 誤 差は観測密度にも依存するが, その一部は流れ の特徴に応じた大気の不確定性を表していると 思われる.

例えば,下層の風は積雲対流の活動と良い相 関がある (榎本他 2006). 例えば,対流の活発化 の数日前にアンサンブル・スプレッドが増大す ることがある. いくつかのメンバーで対流が先 に発生し,下層に渦度や収束を作るために下層 の風のばらつきが大きくなるためだと考えられ る. アンサンブル再解析は,対流の確率的な性

図 1. 2005 年 6 月 24~27 日 12UTC における 1 日 毎の赤外画像 (GOES-9). 高知大学/気象庁.

図 2. 2005 年 6 月, 日本付近 (125–140°E) で平均した 850 hPa 面南北風 (ms⁻¹) の時間緯度断面図. 横軸は日付を表す.

図 3. 日本付近 (125–140°E) で平均した 200 hPa 面 東西風 (ms⁻¹) の時間緯度断面図. 太い実線は, 定常 ロスビー波の臨界緯度 (u = 0) を示す. 横軸は日付 を表す.

質を捉えることができる可能性がある.

3. 大規模~総観規模場の特徴

梅雨前線の形成と消滅を吟味するのに先立っ て,本節では大規模から総観規模場の特徴につ いて見ておくことにする.

日本付近(125°-140°E)に,2005年6月の850 hPa面南北風の時間発展を図2に示す.南より の風が収束しているところは,梅雨前線のおよ その位置を示している.6月10日頃から,南よ りの風は30°Nに収束しており,その北上はゆっ くりとしている.25日に収束は,急に40°Nま で北上した.この時期には,上層の亜熱帯ジェッ ト(図3)にも対応する不連続がある.ジェット の軸は,35°N付近にあったジェットは,25日に 45°Nにジャンプしている.25°Nには,対とな る東風が形成されており,日本付近に高気圧性 循環ができたことを示唆する.

本研究では,解析の対象としなかったが,興味

図 4. 2005 年 6 月, 日本付近 (25–45°N) で平均した 250 hPa 面高度偏差 (gpm, 東西平均からのずれ)の 経度時間断面図. 縦軸は日付を表す.

深いに 7~9 日にもジェットのジャンプがあり, おそらくこれに対応して南風の収束が弱まって いる (図 2).

上層の高度偏差のホフメラー図から, 定常ロ スビー波束の伝播が認められる (図 4). 25 日で 一周しているので, 群速度はおよそ 15 ms⁻¹ と 見積ることができる. ゆっくりとした伝播は, 風 速が小さく湿潤過程の影響が認められる夏季に 特徴的である (2002 年 8 月の事例は Enomoto et al. 2007 参照).

25~30日に135°E付近に高気圧性偏差があることは,図3と整合的であり,日本付近の高気圧性循環はロスビー波の伝播により形成されたことを示唆している.

4. 前線形成函数

前節での解析から, 亜熱帯ジェットの強化が 2005 年 6 月下旬におきた梅雨前線の消滅と再 形成に関与していることが示唆された. 本節で

図 5. 2005 年 6 月 24~27 日 12UTC における 1 日 毎の 850hPa 面相当温位. ALERA アンサンブル平 均から作成.

は,前線形成函数を持いて前線の消滅と形成過 程について調べる.

図5に,1日毎の850hPa面相当温位(Bolton 1980の方法で計算)を示す.6月24日,梅雨 前線を強化するように南東風が収束している (140°E,25°N付近)が,梅雨前線は弱くなりつ つある.25日には,湿舌ははっきりとしなくな り,南東風は日本の上で分流している(133°E, 33°N付近)ため,前線は弱化する.

6月25~27日, 亜熱帯高気圧が西に移動する とともに, 東シナ海で南よりの風が強化される. 27日までに, この南風 (後に南西風) によって, 暖かく湿った風が移流されることにより、黄海 全体の和 F は負となり弱まりつつある梅雨前 と東シナ海北部の冷たく乾燥した領域が消滅. 幅広い湿舌が日本の上に形成され.相当温位傾 度のピークは黄海から日本海に延びている.

は、球面上で次のように書かれる.

$$F = \frac{\mathrm{d}}{\mathrm{d}t} |\nabla \theta| \tag{1}$$

= 非断熱項+ 合流項+シアー項+ 傾斜項

非断熱項 =
$$\frac{1}{|\nabla\theta|} \left[\frac{1}{a\cos\phi} \frac{\partial\theta}{\partial\lambda} \frac{1}{a\cos\phi} \frac{\partial}{\partial\lambda} \left(\frac{\mathrm{d}\theta}{\mathrm{d}t} \right) + \frac{1}{a} \frac{\partial\theta}{\partial\phi} \frac{1}{a} \frac{\partial}{\partial\phi} \left(\frac{\mathrm{d}\theta}{\mathrm{d}t} \right) \right]$$
 (2)
合流項 = $-\frac{1}{|\nabla\theta|} \left[\left(\frac{1}{a\cos\phi} \frac{\partial\theta}{\partial\lambda} \right)^2 \left(\frac{1}{a\cos\phi} \frac{\partial\theta}{\partial\lambda} - \frac{v\tan\phi}{a} \right) + \left(\frac{1}{a} \frac{\partial\theta}{\partial\phi} \right)^2 \frac{1}{a} \frac{\partial v}{\partial\phi} \right]$ (3)

$$\mathcal{V}\mathcal{T}-\bar{\mathfrak{P}} = -\frac{1}{|\nabla\theta|} \frac{1}{a\cos\phi} \frac{\partial\theta}{\partial\lambda} \frac{1}{a} \frac{\partial\theta}{\partial\phi} \\ \frac{1}{a\cos\phi} \left[\frac{\partial v}{\partial\lambda} + \frac{\partial(u\cos\phi)}{\partial\phi} \right]$$
(4)

傾斜項 =
$$-\frac{1}{|\nabla\theta|}\frac{\partial\theta}{\partial p}$$

$$\left[\frac{1}{a\cos\phi}\frac{\partial\theta}{\partial\lambda}\frac{1}{a\cos\phi}\frac{\partial\omega}{\partial\lambda} + \frac{1}{a}\frac{\partial\theta}{\partial\phi}\frac{1}{a}\frac{\partial\omega}{\partial\phi}\right] \quad (5)$$

梅雨前線の西半分は温度傾度はあまり大き くなく、水蒸気傾度により特徴づけられるので、 上の式の温位 θの代わりに,相当温位 θ。を用い る. その結果、「非断熱」項は Lagrange 的に見 た水蒸気を含んでいる.水蒸気の少ない対流圏 上部から上では、 θ_{μ} は θ に近づく、

全微分は、時間の偏微分と移流項から計算し た.時刻 t の時間の偏微分は,時刻 $t - \Delta t$ と $t + \Delta t$ ($\Delta t = 6$ hours) から計算した.

図 6 は, 25 日 12UTC における 850 hPa 前線 形成函数全ての項の和である. 既に議論したよ うに、南西風が分流しているため、合流項とシ アー項は負である (図省略). 傾斜項と非断熱項 は、符号が逆になることが多い(非断熱加熱が 上昇流に伴う冷却で補償されるため). これら の項は日本列島付近で正負が交錯しているが、

線の構造を壊すのに十分な大きさである。

これと前後して、対流圏上層では大陸上で前 線形成がおきている. (図 7). 大陸上 105°E, 前線形成函数 (Petterssen 1936; Petterssen 1956) 35°N 付近に見られる θ。(もしくは θ) の傾度 に沿ってジェットが強化されている (図 8). 北 西風がジェットに吹き込むことにより前線を強 化している. 上層の前線形成は、下層のチベッ ト高原の東側山麓に沿って移流された温暖湿潤 な空気と結合するように見える (図 5). 全ての 項 (非断熱項, 合流項, シアー項, 傾斜項) は前線 を強化するように働いているが、鉛直水平の力 学項は非断熱項により一部打ち消し合っている (図省略).

流れの不確定性 5.

この節では、流れに依存した解析誤差を用いて、 梅雨前線の消滅と再形成について調べる.

図9は、日々の850hPa 面風と次のように東 西風・南北風を合わせたアンサンブル・スプレッ ドである。

$$\sigma = \sqrt{\sigma_u^2 + \sigma_v^2} \tag{6}$$

アンサンブル・スプレッドは各々時間方向に標 準化され,時間に依存しない観測密度の効果を 取り除いてある.時間方向の標準化は、観測が 密な領域で発生する現象を調べるには、必要と なる操作である. 台風以外では東アジアでは解 析誤差が極端に大きくなることはないが、標準 化することにより梅雨前線上の小低気圧付近等 で大きな値を取る.

24 日に見られる、日付変更線付近のピーク は、梅雨前線に沿って東進した低気圧に伴うも

図 6. 2005 年 6 月 25 日, 日本付近の 850 hPa 面前線 形成函数. ALERA アンサンブル平均から作成.

図7.2005年6月25日、日本付近の300hPa面前線 形成函数. ALERA アンサンブル平均から作成.

図8.2005年6月25日,日本付近の300 hPa 面 相当温位 (K, 色) と風 (ms⁻¹, ベクトル). ALERA ア ンサンブル平均から作成.

のである. 東西に延びた不確定性の大きな領域 が120-135°E, 30°N 付近にある. これは, 湿舌 に対応していると考えられる.25日には、前日 と似たような領域の値が大きいが南北に広がっ ている. この領域では、南よりの風が分流して いる.図5と6とを比較することにより、前線 消滅に伴った不確定性が存在することが示唆さ れる.

26日には、黄海上に大きな不確定性領域があ り、翌日にかけて日本海に東進する.これは、前 線形成に対応していると考えられる.

この期間,フィリピン北部で不確定性が増大 している. これは西風と東風の収束が強化され、 対流活動が活発化することに対応しているもの と考えられる.

まとめと議論 6.

2005年6月下旬,日本の南岸で停滞していた梅 われる. 雨前線は、25日頃急速に弱化し消滅した、大陸 上で発生した低気圧が日本海に東進するに従っ 形成函数と新しい解析ツールであるアンサンブ

図 9. 2005 年 6 月 24~27 日 12UTC における.1 日 毎の850hPa面アンサンブル平均風及びそのアンサ ンブル・スプレッド.

て. 新たな梅雨前線が形成された.

前線消滅には、ロスビー波束の伝播と日本付 近での亜熱帯高気圧の強化が関わっていること が示唆された. 下層の高気圧は西に移動し, 強 化された南風により温暖湿潤な空気が北に運ば れた.

大陸上では,対流圏上部で低気圧が形成され, 東進しながら下層の不安定性と結合し,元の梅 雨前線の北側に新たな前線をつくったものと思

本研究では,伝統的な解析ツールである前線

ル・スプレッドを用いた. アンサンブル・スプ レッドの力学的解釈は不十分であるが, 現象を アンサンブル・メンバー間のばらつきという新 たな視点で捉えることにより, 現象の理解が進 むものと期待している.

謝辞

本研究の一部は, 文部科学省科学研究費補助 金若手 B(17740317) を受けて実施された.気 象庁予報部, 海洋研究開発機構, 千葉科学大学 の共同研究の下で作成された ALERA を使用 した.海洋研究開発機構の支援により, 地球シ ミュレータを利用した.解析と作図には, NCAR command language (NCL) を使用した.

参考文献

- Bolton, D., 1980: The computation of equivalent potential temperature. *Mon. Wea. Rev.*, **108**, 1046–1053.
- 榎本 剛,山根省三,三好建正,2006: AFES-LETKF 実験的再解析によるアジア・モンスーンの再現性.平成18年度「異常気象の予測可能性と気候の変化・変動」研究集会報告 (18K-01),京都大学防災研究所13–17.
- Enomoto, T., W. Ohfuchi, H. Nakamura, and M. A. Shapiro, 2007: Remote effects of tropical storm Cristobal upon a cut-off cyclone over Europe in August 2002. *Meteor. Atmos. Phys.*, **96** (1–2), 29–42.
- Enomoto, T., A. Kuwano-Yoshida, N. Komori, and W. Ohfuchi, 2006: Description of AFES
 2: improvements for high-resolution and coupled simulations. In *High Resolution Numerical Modelling of the Atmosphere and Ocean*. W. Ohfuchi and K. Hamilton (eds), Springer, New York, in press.
- Miyoshi, T. and S. Yamane, 2007: Local ensemble transform Kalman filtering with an AGCM at a T159/L48 resolution. *Mon. Wea. Rev.*, **135**, 3841–3861.

- Miyoshi, T., S. Yamane, T. Enomoto, 2007: The AFES-LETKF experimental ensemble reanalysis: ALERA. *SOLA*, **3**, 45–48.
- Ninomiya, K. and T. Murakami, 1987: The early summer rainy season (Baiu) over Japan. In *Monsoon Meteorology*, 93–121, Oxford U. Press.
- Ninomiya, K. and T. Akiyama, 1992: Muti-scale features of Baiu, the summer monsoon over Japan and the east Asia. *J. Meteor. Soc. Japan*, **70**, 467–495.
- Numaguti, A., M. Takahashi, T. Nakajima, A. and Sumi, 1997: Description of CCSR/NIES/ Atmospheric General Circulation Model. CGER's Supercomputer Monograph Report, 3, National Institute of Environmental Sciences, Tsukuba, Japan, 1–48.
- Ohfuchi, W., H. Nakamura, M. K. Yoshioka, T. Enomoto, K. Takaya, X. Peng, S. Yamane, T. Nishimura, Y. Kurihara, and K. Ninomiya, 2004: 10-km mesh meso-scale resolving simulations of the global atmosphere on the Earth Simulator—Preliminary outcomes of AFES (AGCM for the Earth Simulator). *J. Earth Simulator*, 1, 8–34.
- Petterssen, S., 1936: Contribution to the theory of frontogenesis. *Geophys. Publ.*, **11**(6), 1–27.
- Petterssen, S., 1956: Weather Analysis and Forecasting, Vol. 1, Montion and Motion Systems. 2nd ed. McGraw-Hill, 428pp.